QUANTUM SCALE METROLOGY: MEASURING THE LIFETIME OF A MIXED STATE Jesús Rubio[†]

School of Mathematics & Physics, University of Surrey, Guildford GU2 7XH, UK

- Progress across modern quantum sciences is intimately connected to the possibility of performing highly precise measurements.
- Quantum metrology is being expanded to new regimes including dissipative dynamics, finite information, incompatible estimators and parameters other than phases.
- This poster presents the optimal quantum strategy for the measurement of time scales of dissipative processes, choosing spontaneous photon emission as a case study.
- This is achieved by means of quantum scale metrology, a new Bayesian framework based on logarithmic errors that enables the precise estimation of scale parameters.

Quantum metrology of scale parameters

Experimental description

• Dimensionless measurand x. • Known parameters $\boldsymbol{y} = (y_1, y_2, \dots)$. • Unknown parameter Θ .

What is a scale parameter?

 Θ scales y_i if, for fixed Θ , y_i is considered 'large' when $y_i/\Theta \gg 1$ and `small' when $y_i/\Theta \ll 1$. This is invariant under transformations

 $y_i \mapsto y'_i = \gamma y_i, \ \Theta \mapsto \Theta' = \gamma \Theta,$ with positive γ , since $y_i / \Theta = y'_i / \Theta'$.

Metrological protocol

1. Prepare the state $\rho_{y}(\theta)$.

- 2. Implement the POM $M_{u}(x)$.
- 3. Record the outcome x, with statistics given by the Born rule

Result 1: Optimal strategy Let the operator $S_{\boldsymbol{y}} = \int ds \, \mathcal{P}_{\boldsymbol{y}}(s) \, s$ solve the Lyaponuv equation $S_{\boldsymbol{y}}\varrho_{\boldsymbol{y},0} + \varrho_{\boldsymbol{y},0}S_{\boldsymbol{y}} = 2\varrho_{\boldsymbol{y},1},$ where $\varrho_{\boldsymbol{y},k} = \int d\theta \, p(\theta) \rho_{\boldsymbol{y}}(\theta) \log^k \left(\frac{\theta}{\theta_u}\right);$ then, the optimal estimator is

 $\theta_{\boldsymbol{y}}(x) \mapsto \vartheta_{\boldsymbol{y}}(s) = \theta_u \exp(s),$ and the *optimal POM* is $M_{\boldsymbol{y}}(x) \mapsto \mathcal{M}_{\boldsymbol{y}}(s) = \mathcal{P}_{\boldsymbol{y}}(s).$

Result 2: Ultimate precision limits The hierarchy of inequalities $ar{\epsilon}_{ ext{mle}} \geq ar{\epsilon}_p - \mathcal{K}_{oldsymbol{y}} \geq ar{\epsilon}_p - oldsymbol{\mathcal{J}}_{oldsymbol{y}}$ gives fundamental lower bounds

Quantum-enhanced estimation of a time scale

Spontaneous photon emission

Let a two-level atom prepared as

$$|\psi\rangle = \sqrt{1-a} |g\rangle + \sqrt{a} |e\rangle$$

undergo spontaneous photon emission:

Using the formalism of open quantum systems, the statistics of this pro-

cess may be described as⁷ $\rho_t(\tau) = [1 - a \eta_t(\tau)] |g\rangle\langle g| + a \eta_t(\tau) |e\rangle\langle e|$ $+ \left[a(1-a)\eta_t(\tau)\right]^{\frac{1}{2}} \left(|g\rangle\langle e| + |e\rangle\langle g|\right),$ with $\eta_t(\tau) \coloneqq \exp(-t/\tau)$, lifetime τ and elapsed time t.

Estimation problem

Unknown parameter: $\Theta = \tau$; available prior information:

• $\theta/t \in [0.01, 10]$.

• $p(\theta) = 0.145/\theta$.

• a = 0.9.

 $\operatorname{Tr}[M_{\boldsymbol{y}}(x)\rho_{\boldsymbol{y}}(\theta)] = h\left(x, \frac{\boldsymbol{y}}{\boldsymbol{\theta}}\right).$ 4. Find the estimator $\tilde{\theta}_{y}(x) \pm \Delta \tilde{\theta}_{y}(x)$.

Optimisation problem $\min_{M_{\boldsymbol{y}}(x),\,\tilde{\theta}_{\boldsymbol{y}}(x)} \operatorname{Tr}\left\{\int dx\,M_{\boldsymbol{y}}(x)\,W_{\boldsymbol{y}}[\tilde{\theta}_{\boldsymbol{y}}(x)]\right\},\,$ with prior $p(\theta)$ and $W_{\boldsymbol{y}}[\tilde{\theta}_{\boldsymbol{y}}(x)] = \int d\theta \, p(\theta) \, \rho_{\boldsymbol{y}}(\theta) \log^2 \left[\frac{\tilde{\theta}_{\boldsymbol{y}}(x)}{\theta} \right] \,.$

- on the precision of scale estimation problems. Here,
- $\bar{\epsilon}_p$ only depends on the prior,
- using the optimal estimator saturates the first inequality, and
- using the optimal POM saturates the second inequality.

The expressions for $\bar{\epsilon}_p$, \mathcal{K}_y and \mathcal{J}_y are given in Rubio *et al.*^{1,2}

Beyond quantum phase estimation

Parameter	phase	location	scale
Support	$0 \le \theta < 2\pi$	$-\infty < heta < \infty$	$0 < \theta < \infty$
Symmetry	$\theta \mapsto \theta' = \theta + 2\gamma \pi, \ \gamma \in \mathbb{Z}$	$\theta \mapsto \theta' = \theta + \gamma, \ \gamma \in \mathbb{R}$	$\theta \mapsto \theta' = \gamma \theta, \ \gamma \in \mathbb{R}_{++}$
Ignorance	$p(\theta) = 1/2\pi$	$p(\theta) \propto 1$	$p(\theta) \propto 1/\theta$
Error $\mathcal{D}(\tilde{\theta}, \theta)$	$4\sin^2[(\tilde{\theta}-\theta)/2]$	$(\widetilde{ heta}- heta)^2$	$\log^2(ilde{ heta}/ heta)$

References

'Yes'/'No' measurement

Whether or not a photon is emitted is captured by the physical POM^7

 $M_{t,\tau_0}^Y = [1 - \eta_t(\tau_0)] |e\rangle \langle e|$ ('Yes'), $M_{t,\tau_0}^N = |g\rangle\!\langle g| + \eta_t(\tau_0) |e\rangle\!\langle e| \text{ (`No').}$

Remarks:

- Initial `hint' τ_o at the true lifetime τ needed.
- Informative, as it reduces the prior uncertainty $\bar{\epsilon}_p$.
- τ easier to estimate when the decay is likely to have already happened, i.e., for $\tau_0/t \ll 1$.
- Yet, generally suboptimal.

with $L_t(au_0)|\lambda^i_{t, au_0}
angle\,=\,\lambda^i_{t, au_0}|\lambda^i_{t, au_0}
angle$, $L_t(au)
ho_t(au)$ $+\rho_t(\tau)L_t(\tau) = 2\partial_\tau \rho_t(\tau).$

Remarks:

- Initial `hint' τ_o still needed.
- More informative than 'Yes'/'No' measurements.
- However, suboptimal for $\tau_0/t \gg 1$.

Optimal measurement

The eigendecomposition of S_u leads to the optimal POM $\mathcal{M}_{y}^{+}=|\psi_{+}
angle\langle\psi_{+}|$ and $\mathcal{M}_{u}^{-}=|\psi_{-}
angle\!\langle\psi_{-}|$, with

> $|\psi_{+}\rangle = 0.094 |g\rangle + 0.996 |e\rangle,$ $|\psi_{-}\rangle = 0.996 |g\rangle - 0.094 |e\rangle.$

[†]j.rubiojimenez@surrey.ac.uk

J. Rubio et al. Phys. Rev. Lett., 127:190402, 2021.

- ² J. Rubio. *Quantum Sci. Tech.*, 8(1):015009, 2022.
- ³ J. Glatthard *et al. PRX Quantum*, 3:040330, 2022.

⁴C. W. Helstrom. *Quantum Detection and Estimation Theory*. Academic Press, New York, 1976.

⁵ E. T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, Cambridge, 2003.

⁶W. von der Linden *et al. Bayesian Probability Theory: Applications in the Physical Sciences*. Cambridge University Press, Cambridge, 2014.

⁷S. M. Barnett. *Quantum information*. Oxford University Press, Oxford, 2009.

⁸ J. Rubio and J. Dunningham. *Phys. Rev. A*, 101:032114, 2020.

⁹ R. Demkowicz-Dobrzański et al. Journal of Physics A: Mathematical and *Theoretical*, 53(36):363001, 2020.

SLD measurement

The Fisher information leads to the local POM^9

 $M_{t,\tau_0}^i = |\lambda_{t,\tau_0}^i\rangle\langle\lambda_{t,\tau_0}^i|, \text{ for } i=1,2,$

Remarks:

• Globally optimal, τ_0 -independent.

• Establishes the fundamental precision limit for the estimation of τ .

Conclusions

- This work demonstrates the optimal estimation of a time scale using quantum resources.
- This has been possible thanks to quantum scale metrology, a new framework enabling the most precise estimation of scale parameters allowed by quantum mechanics.

• By virtue of having generalised metrology beyond phase estimation, this work sets the path for the construction of new quantum estimation theories for all kinds of parameters.